domingo, 17 de mayo de 2009

METABOLISMO DE LIPIDOS







MECANISMOS DE REACCION DE LOS SIGUIENTES:




ÀCIDO PALMÌTICO



El ácido palmítico es un ácido graso saturado de cadena larga, formado por dieciséis átomos de carbono. Su nombre químico es ácido hexadecanoico.
El ácido palmítico es el principal ácido graso saturado de la
dieta, constituyendo aproximadamente un 60% de los mismos. Es el más abundante en las carnes y grasas lácteas (mantequilla, queso y nata) y en los aceites vegetales como el aceite de coco y el aceite de palma.
El ácido palmítico es un sólido blanco que se licúa a unos 63,1 °C.
Su fórmula química es CH3(CH2)14COOH.
Es el primer ácido graso que se produce durante la
lipogénesis y a partir de él se pueden formar otros ácidos grasos de cadena más larga. Durante el catabolismo, la oxidación total de un mol de ácido palmítico produce en energía química, 129 moles de ATP.
Es el ácido graso menos saludable pues es el que más aumenta los niveles de
colesterol en la sangre, por lo que es el más aterogénico.
Durante la
Segunda Guerra Mundial se usaron derivados del ácido palmítico para la producción de napalm.
Uno podría predecir que la vía de síntesis de ácidos grasos seria el reverso de su vía de oxidación. Sin embargo, esto no permitiría una regulación distinta para estas dos vías aun cuando estas vías están separadas en distintos compartimientos intracelulares.
La vía de síntesis de los ácidos grasos ocurre en el citoplasma, mientras que su oxidación sucede en la mitocondria. La otra diferencia importante es el uso de co-factores nucleótidos. La oxidación de las grasas incluye la reducción del FAD+ y NAD+. La síntesis de las grasas involucra la oxidación de NADPH. Sin embargo, la química esencial de los dos procesos son el reverso uno del otro. Tanto la oxidación como la síntesis de la grasa utiliza un intermediario activado de dos carbonos, acetil.CoA. Sin embargo, la acetil.Coa en la síntesis de la grasa esta temporalmente unida al complejo enzimático como malonil-CoA.
La síntesis de la malonil-CoA es el primer paso de cometimiento para la síntesis de ácidos grasos y la enzima que cataliza esta reacción, la acetil.Coa carboxilasa (ACC), es el sitio más importante de la regulación de la síntesis de ácidos grasos. Como otras enzimas que transfieren CO2 a sustratos, la ACC requiere como co-factor a la
biotina.









La tasa de síntesis de ácidos grasos se controla por el equilibrio entre la ACC monoméricas y la ACC polimérica. La actividad de la ACC requiere polimerización. Este cambio conformacional es incrementado por el citrato e inhibido por los ácidos grasos de cadena larga. La ACC también es regulada por fosforilación (ver después).
Los grupos acetil que son productos de la oxidación de los ácidos grasos están unidos a la CoASH. Como se recordara, la CoA tiene un grupo fosfopantoténico unido al AMP. El transportador de grupos acetil (y grupos acilo para alargamiento) durante la síntesis de ácidos grasos es también un grupo prostético fosfopantoténico, sin embargo, está unido a un hidroxilo de serina en el complejo enzimático de síntesis. La porción transportadora del complejo de síntesis se llama proteína transportadora de acilos, ACP. Esto es de alguna forma una mala denominación en la síntesis de ácidos grasos en eucariotes debido a que la porción ACP del complejo enzimático es simplemente uno de muchos dominios en un solo polipéptido. La acetil.CoA y la malonil-CoA son transferidas a la ACP por acción de la transacilasa acetil.CoA y la transacilasa malonil-CoA, respectivamente. La unión de estos átomos de carbono a la ACP permite que estos entren al ciclo de la síntesis de ácidos grasos.
La síntesis de ácidos grasos a partir de la acetil.CoA y de la malonil-CoA se hace por acción de la sintasa de ácidos grasos, FAS. La enzima activa es un dímero de subunidades idénticas.
Todas las reacciones de la síntesis de ácidos grasos se llevan a cabo por las múltiples actividades enzimáticas de la FAS. De forma similar a la oxidación de ácidos grasos, la síntesis de ácidos grasos comprende 4 actividades enzimáticas. Estas incluyen, β-ceto-ACP sintasa, β-ceto-ACP reductasa, 3-OH acil-ACP dehidratasa y enoil-CoA reductasa. Las dos reacciones de reducción requieren la oxidación de NADPH a NADP+.
El principal ácido graso sintetizado por la FAS es el palmitato. El palmitato entonces es liberado desde la enzima y puede ser alongado y/o desaturado para producir otras moléculas de ácidos grasos.


TRIACILGLICÈRIDOS (TAG), TRIACILGLICEROLES O GRASAS NEUTRAS


Estos lípidos consisten de una molécula de glicerol que está triesterificada; su principal función es la reserva energética.




Figura: representación de las moléculas de glicerol y triacilgicérido



Los grupos R son ácidos grasos.

Los triacilglicéridos (TAG) (triacilgliceroles o grasas), son la reserva principal de energía metabólica en animales y el 90 % de la ingesta de lípidos.



Figura: representación de un TAG



Al igual que la glucosa, son metabólicamente oxidados a CO2 y agua, muchos de sus átomos tienen estados de oxidación más bajos que los de la glucosa, su metabolismo oxidativo rinde el doble de la energía que una cantidad igual de carbohidratos o proteínas en peso seco.

DH (kcal/g peso seco)
Carbohidratos 66.994
Grasas 154.808
Proteínas 71.128
Las grasas se almacenan en ambientes anhidros. El glucógeno se almacena en forma hidratada, la cual contiene aproximadamente el doble de su peso seco, por lo tanto las grasas proveen más de seis veces la energía metabólica que el mismo peso de glucógeno hidratado.

Las enzimas digestivas de los TAGs son hidrosolubles, su digestión se lleva a cabo en interfases lípido-agua. La velocidad de este proceso, depende entonces del área superficial de la interfase, la cual se incrementa por los movimientos peristálticos del intestino combinados con la emulsificación de los ácidos biliares (detergentes digestivos sintetizados en el hígado y llevadas al intestino delgado en donde la digestión y absorción lipídica se lleva a cabo).

La lipasa pancreática (TAG lipasa; estructura tridimensional resuelta), hidroliza a los TAG en posición 1 y 3 formando secuencialmente 1,2-diacilglicerol y 2-acilglicerol y las sales de Na+ y K+ de los ácidos grasos (jabones que ayudan a la emulsificación).

La TAG lipasa presenta activación superficial i.e. su actividad se incrementa al entrar en contacto con la interfase lípido-agua, no se une a la interfase, está en contacto con la colipasa (1:1). El sitio catalítico de la enzima, residuos 1-336 (tiene 449) contiene una triada parecida a la que se encuentra en la serin proteasas (Ser, His y Asp) y la enzima sufre un cambio conformacional para realizar su catálisis.

Los fosfolípidos son degradados por la fosfolipasa pancreática A2 (estructura tridimensional resuelta en veneno de cobra y de abeja), la cual por hidrólisis corta en la posición 2 del glicerol para dar el lisofosfolípido correspondiente, el cual es también un detergente. De hecho la lecitina (fosfatidilcolina) es secretada en la bilis presumiblemente para ayudar a la digestión de lípidos. La reacción se lleva preferencialmente en interfases al igual que la TAG lipasa, pero ésta no lleva a cabo un cambio conformacional en la catálisis, contiene un poro o canal, por medio del cual el substrato llega al sitio catalítico. En vez de triada catalítica, contiene una diada (His y Asp) junto con una molécula de agua.




Figura: Sitios de acción de las fosfolipasas.


Los productos de la digestión de los lípidos, son absorbidos por las células de la mucosa intestinal (en el intestino delgado) el proceso es facilitado por los ácidos biliares que ayudan a formar micelas. Organismos con los conductos biliares obstruidos absorben muy poca cantidad del total de la dieta lipídica, pero eliminan formas hidrolizadas de éstos en las heces (a este trastorno se le conoce como ESTEATORREA). Los ácidos biliares son esenciales para el transporte de los productos de la digestión de los lípidos, no sólo para su degradación, así mismo son necesarios para el transporte de vitaminas liposolubles (A,D,E y K).

Dentro de las células intestinales, los ácidos grasos forman un complejo con la proteína intestinal que une ácidos grasos (I-FABP; estructura tridimensional resuelta) incrementa la solubilidad de éstas moléculas y protege contra la acción detergente de las mismas.

Los productos de la digestión de los lípidos que son absorbidos por la mucosa intestinal, son transformados en TAG y empacados en partículas de lipoproteínas llamadas QUILOMICRONES o bien en lipoproteínas de muy baja densidad (VLDL) en el hígado. Estas partículas se liberan al torrente sanguíneo vía el sistema linfático para llegar a todos los tejidos.

Los componentes de los quilomicrones y las VLDL son hidrolizados a ácidos grasos libres y glicerol en los capilares del tejido adiposo y músculo esquelético por la acción de la lipoproteína lipasa, entonces los ácidos grasos libres pueden ser utilizados y/o almacenados, mientras que el glicerol es transportado al hígado o riñón en donde es transformado en DHAP por la reacción secuencial de la glicerol cinasa y la glicerol-3-fosfato deshidrogenasa.





Figura: destino del glicerol de los TAG´s hidrolizados



La mobilización de los TAG almacenados en el tejido adiposo necesita de su hidrólisis para generar glicerol y ácidos grasos libres, esta reacción es catalizada por la TAG lipasa sensible a hormonas. Los ácidos grasos libres son liberados al torrente sanguíneo en donde se unen a la ALBÚMINA (monómero 65 kD que representa la mitad de la proteína sérica). En ausencia de esta proteína, la solubilidad de los ácidos grasos libres es del orden de 10-6 M, por arriba de esta concentración, forman micelas y son detergentes (pueden destruir la estructura de las membranas celulares). En complejo con albúmina, su solubilidad es de 2 mM. Hay organismos que presentan muy poca albúmina en sangre (ANALBUMINEMIA), no presentan graves síntomas, sus ácidos grasos son evidentemente transportados por otras proteínas séricas.

FOSFOGLICÈRIDO

Los fosfoglicéridos o glicerofosfolípidos son moléculas lipídica del grupo de los fosfolípidos. Están compuestos por ácido fosfatídico, una molécula compleja compuesta por glicerol, en el que se han esterificado dos ácidos grasos (uno saturado y otro insaturado) y un grupo fosfato. A su vez, al grupo fosfato se une un alcohol o un aminoalcohol. En los organismos vivos tiene función estructural puesto que son uno de los principales componentes de las bicapas de las membranas celulares y subcelulares.
Los fosfolípidos tienen un marcado carácter
anfipático consecuencia de la estructura de la molécula; las largas cadenas alifáticas de los ácidos grasos tienen carácter hidrófobo (repelen el agua) y forman dos largas "colas" apolares, mientras que el grupo fosfato y el alcohol, cargados eléctricamente, son fuertemente hidrófilos (interaccionan con el agua) y constituyen la "cabeza" polar de la molécula; ello conduce a que, en un medio acuoso, se autoorganicen formando bicapas, con las cabezas polares en contacto con el agua y las colas hidrófobas "escondidas" y enfrentadas entre si.



Fosfoglicéridos1: cabeza hidrófila; 2: colas hidrófobas. A: fosfatidilcolina; B: fosfatidiletanolamina; C: fosfatidilserina; D: representación esquemática de un fosfoglicérido con la cabeza hidrófila (1) y las colas hidrófobas (2)

martes, 5 de mayo de 2009

lunes, 4 de mayo de 2009

domingo, 3 de mayo de 2009

RESUMEN DE FUNCIONES PRINCIPALES DE LOS DISTINTOS LÍPIDOS

Funciones de los lípidos
Los lípidos desempeñan diferentes tipos de funciones biológicas:
Función de reserva energética. Los triglicéridos son la principal reserva de energía de los animales ya que un gramo de grasa produce 9,4 kilocalorías en las reacciones metabólicas de oxidación, mientras que las proteínas y los glúcidos sólo producen 4,1 kilocalorías por gramo.
Función estructural. Los fosfolípidos, los glucolípidos y el colesterol forman las bicapas lipídicas de las membranas celulares. Los triglicéridos del tejido adiposo recubren y proporcionan consistencia a los órganos y protegen mecánicamente estructuras o son aislantes térmicos.
Función reguladora, hormonal o de comunicación celular. Las vitaminas liposolubles son de naturaleza lipídica (terpenoides, esteroides); las hormonas esteroides regulan el metabolismo y las funciones de reproducción; los glucolípidos actúan como receptores de membrana; los eicosanoides poseen un papel destacado en la comunicación celular, inflamación, respuesta inmune, etc.
Función relajante. Los lípidos se acumulan en el tejido adiposo formando grandes tejidos grasosos que se manifiestan en aumento de peso en caso de sedentarismo, lo que aumenta la concentración de la hormona TRL en sangre. En la neurohipófisis, esta elevada concentración de TRL estimula la hipófisis para que inhiba la secreción hormona ACTH provocando una sensación relajamiento general del cuerpo, según los últimos estudios de la Universidad de Cabo Soho.
Constituyen Hormonas.
Constituyen la estructura de la membrana citoplasmática. Ej. Fosfolípidos.

FUNCIÓN ENERGÉTICA

Los lípidos (generalmente en forma de triacilgiceroles) constituyen la reserva energética de uso tardío o diferido del organismo. Su contenido calórico es muy alto (10 Kcal/gramo), y representan una forma compacta y anhidra de almacenamiento de energía.








A diferencia de los hidratos de carbono, que pueden metabolizarse en presencia o en ausencia de oxígeno, los lípidos sólo pueden metabolizarse aeróbicamente.
RESERVA DE AGUA


Aunque parezca paradójico, los lípidos representan una importante reserva de agua. Al poseer un grado de reducción mucho mayor el de los hidratos de carbono, la combustión aerobia de los lípidos produce una gran cantidad de agua (agua metabólica). Así, la combustión de un mol de ácido palmítico puede producir hasta 146 moles de agua (32 por la combustión directa del palmítico, y el resto por la fosforilación oxidativa acoplada a la respiración). En animales desérticos, las reservas grasas se utilizan principalmente para producir agua (es el caso de la reserva grasa de la joroba de camellos y dromedarios).





PRODUCCIÓN DE CALOR

En algunos animales hay un tejido adiposo especializado que se llama grasa parda o grasa marrón. En este tejido, la combustión de los lípidos está desacoplada de la fosforilación oxidativa, por lo que no se produce ATP, y la mayor parte de la energía derivada de la combustión de los triacilgliceroles se destina a la producción de calor.
En los animales que hibernan, la grasa marrón se encarga de generar la energía calórica necesaria para los largos períodos de hibernación. En este proceso, un oso puede llegar a perder hasta el 20% de su masa corporal.


FUNCIÓN ESTRUCTURAL

El medio biológico es un medio acuoso. Las células, a su vez, están rodeadas por otro medio acuoso. Por lo tanto, para poder delimitar bien el espacio celular, la interfase célula-medio debe ser necesariamente hidrofóbica. Esta interfase está formada por lípidos de tipo anfipático, que tienen una parte de la molécula de tipo hidrofóbico y otra parte de tipo hidrofílico. En medio acuoso, estos lípidos tienden a autoestructurarse formando la bicapa lipídica de la membrana plasmática que rodea la célula.



En las células eucariotas existen una serie de orgánulos celulares (núcleo, mitocondrias, cloroplastos, lisosomas, etc) que también están rodeados por una membrana constituída, principalmente por una bicapa lipídica compuesta por fosfolípidos. Las ceras son un tipo de lípidos neutros, cuya principal función es la de protección mecánica de las estructuras donde aparecen.


FUNCIÓN INFORMATIVA

Los organismos pluricelulares han desarrollado distintos sistemas de comunicación entre sus órganos y tejidos. Así, el sistema endocrino genera señales químicas para la adaptación del organismo a circunstancias medioambientales diversas. Estas señales reciben el nombre de hormonas. Muchas de estas hormonas (esteroides, prostaglandinas, leucotrienos, calciferoles, etc) tienen estructura lipídica.



En otros casos, los lípidos pueden funcionar como segundos mensajeros. Esto ocurre cuando se activan las fosfolipasas o las esfingomielinasas e hidrolizan glicerolípidos o esfingolípidos generando diversos compuestos que actúan como segundos mensajeros (diacilgliceroles, ceramidas, inositolfosfatos, etc) que intervienen en multitud de procesos celulares. (Ver figura inferior).


bibliografia
http://es.wikipedia.org/wiki/L%C3%ADpidos
http://www.monografias.com/trabajos16/lipidos/lipidos.shtml
bioquimica 3ra edicion
Mathews, van Holde,Ahern
Pearson



LIPIDOS





lunes, 16 de marzo de 2009